『章节错误,点此报送』
692.看到希望(第1章)[2/3页]
接到电话以后笑着说,“她很关心芯片案子的问题,虽然方老师对芯片不是很了解,但她知道这东西关乎国家的未来,是非常重要的一项科技。”jieshengit.com
那边张如京沉默了一会儿,然后说到,“对的,曹总,我要说的就是这件事情,清大的唐川力教授团队已经研发出一种稳定的极紫外光光源了,你想不想来一起看看?”
“哈?!”
曹阳愣了两秒钟,整个人开心得合不拢嘴,显得异常的惊讶。
“真的假的?”
妈耶!
前世都没有做到的事情,没有想到这一世居然能做到了?!
可千万别是什么冒充骗钱的呀!
……
极紫外光光源这个东西,说起来是EUV开发的三大难题之一。
有人这样形容光刻机:“这是一种集合了数学、光学、流体力学、高分子物理与化学、表面物理与化学、精密仪器、机械、自动化、软件、图像识别领域顶尖技术的产物。”
我们可以把光刻机看作一台高精度的底片曝光洗印机,它负责把“底片”,也就是设计好的芯片电路图曝光到“相片纸”上。这个“底片”有一个专业名称,叫做“掩膜”。而这里的“相片纸”,就是制造芯片的基底材料硅晶圆;曝光完成后得到的最终“照片”,就是芯片。
光刻机的基本结构最关键的部件只有三个:光源发射器、用来调整光路和聚焦的光学镜头,以及放置硅晶圆的曝光台。
正是因为光刻机的工作原理和基本结构并不复杂,所以,在芯片行业发展的早期,并没有专门的光刻机生产商。
芯片公司只需要到照相器材商店购买普通的相片洗印设备,然后自己加工改造一下就可以了。后来随着需求的不断提升,到现在智能手机的出现,对芯片提出了越来越高的要求。
经过这么多年的发展,博米公司虽然拥有着世界最高水准的芯片设计能力,可仍然缺乏芯片制造技术。
或者说,这一切的源头都卡在光刻机这里。
这就要说到芯片行业著名的“摩尔定律”。摩尔定律是指,每隔两年,同样大小的一块芯片上,晶体管数量会增加一倍。
换句话说,芯片的性能也增加一倍。但摩尔定律并不是客观的自然规律,而是芯片行业在激烈竞争中形成的经验规律:一旦芯片公司的研发速度落后于这个节奏,就将被无情淘汰。摩尔定律自从1965年提出后,统治了芯片行业长达半个世纪。
半个世纪以来,芯片上的晶体管数量一直在呈指数级增长。如果还把芯片比喻为“照片”的话,那么,这个照片的像素是呈指数级增长的。相应地,用来曝光洗印“照片”的光刻机的精度,也必须越来越高,否则,你设计的“照片”再精美,印不出来也没有用。
比如,未来博米的智能手机需要用到低于10nm级别的芯片,生产这样的芯片,要用到的最先进的极紫外光刻机。
它的精度要达到什么样的程度呢?首先,如果把光想象成一把刻刀的话,那么光波越短,这把刻刀就越锋利。
1纳米等于百万分之一毫米,7纳米芯片意味着,它的每个元器件之间,只允许有几纳米的间隔距离,相当于一根头发丝粗细的万分之一。
要曝光这样的芯片,必须采用一种特殊的光源,也就是极紫外光,它的波长只有13.5纳米,是可见光波长的几十分之一。
但是,极紫外光源很难制造。
直到今年年初,阿斯麦才研制出了第一台极紫外光刻机。
不过这个进程已经比曹阳前世的要提前太多了。
光刻机的第二个技术难点,是用来调整光路和聚焦的光学镜头。高度精密的光学镜头是光刻机的核心部件之一,所以,排在阿斯麦之后的另外两家光刻机生产商,尼康和佳能,都是生产光学镜头的佼佼者。
阿斯麦自己不生产镜头,它的镜头来自德国的光学大师卡尔蔡司。这种镜头有多精密呢?如果把镜头放大到一个地球那么大,它上面只允许有一根头发丝那样的凸起。所以有人说,这可能是宇宙中最光滑的人造物体。
国内吃亏就吃亏在没有完整的产业链,尤其是光学元件所需要的产业链上面,摄像头,照相机基本上都是来自于国外公司生产,很少能将光学元件打磨到那么精细。
所以这一块还有很长的路要走。
最后一个难点就在于【精准】
芯片不是一次曝光就可以完成的,而是必须更换不同的掩膜,进行多次曝光。
芯片的每个元器件之间只允许有几纳米的间隔。这就意味着,掩膜和硅晶圆每次对准的误差,也必须控制在纳米级别。
曝光完一个区域之后,放置硅晶圆的曝光台必须快速移动,接着曝光下一个区域。
要在快速移动中实现纳米级的对准,这个难度就相当于,你要从眨眼之间,端着一盘菜从BJ天安门冲到上海外滩,恰好踩到预定的脚印上,菜还保持端平不能洒。
当然,这还有一系列外围的技术难题,比如,室外空气干净1万倍的超洁净厂房
692.看到希望(第1章)[2/3页]
『加入书签,方便阅读』